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A method is suggested for calculating the total current to a plane wall probe located in the side surface of a 
hypersonic aircraft. The applicability of the method is limited by weaker conditions than those used in the 
well known works [1]. Comparison of the results of probe experiments with those obtained from SHF 
inspection of the plasma and with calculations of other authors in the region of their applicability 
demonstrated satisfactory agreement. 

1. In the present work we suggest a method for calculating the total current to a plane wall probe located 
in a flow of a dense weakly ionized gas. Thus, the regime of a continuous medium is realized. The parameters of 

the boundary layer not perturbed by the probe are considered to be given. We also know the geometric dimensions 
and the potential of the probe (for definiteness, we will consider it negative). 

The problem of finding the probe current may turn out to be one-dimensional (the characteristic dimension 

of the probe is many times greater than the thickness of the boundary layer and the space charge layer), two- 

dimensional (the geometric dimensions of the proble have been selected so that the probe current is constant along 

one of the coordinates), and three-dimensional. At the present time, a method has been developed for calculating 

a three-dimensional nonstationary probe probem [2 ], but in many practical cases it is sufficient to be confined to 
a two-dimensional statement. This saves substantial computer time in numerical experiments. 

Among the engineering methods used to calculate the current to a plane wall probe, the formula of Chung 

[1 ] is generally useful, but it is applicable only in the case of a thin space charge layer. It permits one to obtain 

rather good accuracy in processing probe characteristics if the ratio of the boundary layer thickness to the Debye 
radius ratio exceeds 10. 

We suggest another formula for calculating the ion current to a plane wall probe. It is valid for both a thin 
and a thick space charge layer. 

2. We consider a plane wall probe with the characteristic dimension rp and the potential ~Op that is located 

on a plate with a sharp leading edge or an axisymmetric blunt body immersed in a flow of a weakly ionized plasma 

with frozen chemical reactions. Suppose that the boundary layer thickness in the region of the location of the probe 
c5 is of the same order of magnitude as the space charge layer thickness A. 

The problem of finding the probe current as a function of its potential reduces to the solution of a three- 
dimensional nonstationary problem that includes continuity equations for the ions and the electrons, an energy 

equation for the electrons, and a Poisson equation for the self-consistent electric field. Let us write the system in 
dimensionless form [ 1 - 3  ]: 
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Fig. 1. Dependence of the electric field strength E on the probe potential 
f ~  

and its size r. 
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In system (1)-(4), r/e,i,  Te, i are the concentrations and temperatures of the ions and electrons; He is the 

enthalpy of the electrons; E, 7' are the strength and potential of the self-consistent electric field. The remaining 
symbols are generally accepted and correspond to [ 1 -  3 ]. 

The system of equations (1)-(4) was supplemented with boundary and initial conditions [1 -3 ]  and solved 

by the method of successive iterations in time using the algorithm of large particles for the continuity equations, 
the schemes of the arithmetic mean for the energy equation, and the Pisman-Rachford for the Poisson equation 

[1-3  ]. The profiles of the concentrations, temperatures, and velocities of the neutral component in the boundary 
layer were assumed to be given. 

On the basis of numerical experiments we obtained the dependence of the probe current on the plasma free 

stream velocity, the characteristic dimension of the probe, its potential, and other parameters of the problem. This 

made it possible to obtain a simple computational formula for processing the characteristics of the plane wall probe. 
If we denote the ratio between the density of the current to a probe in the presence of a directed velocity and the 

density of the current to the same probe in a quiescent plasma by K1 and the ratio between the density of the 

current to a probe with the characteristic dimension rp and the density of the current to a probe of very large size 
by Kz, then by dividing the experimentally measured density of the probe current by K1K2, w e  obtain the density 
of the current to a probe operating under the idealized conditions that the direction of the velocity is immaterial 

and the probe is of infinitely large size. Under these conditions the density of the probe current depends mainly 
on the potential gradient and the concentration of the ions [1, 3 ]: 

Iexp ( Oni en i ) 
KIK2 = I t 0 =  eDi ~ Oy + ~ E , (5) 

where y is the coordinate across the boundary layer. 
Equation (5) yields a formula for the concentration of the ions on the outer edge of the space charge layer: 
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Fig. 2. Dependence of the coefficient K 1 on the free stream velocity u. 
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Fig. 3. Dependence of the coefficient K 2 on the probe size r. 

where the sign A denotes dimensionless quantities: 

E =  ~ E  = kTiT-erD rti = - - ;  Yi = -~D , rD = ' niA 4Jcne 2 

A 

The values of E, Kl, and K2 were found in a numerical experiment; they are presented in Figs. 1-3 .  

To carry out calculations by formula (6), the derivative On'~/O~ should be determined from additional 

considerations. If the concentration profile in a boundary layer changes smoothly, then the following condition is 
usually fulfilled: 

eniE On i 
>> (7) 
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and therefore in approximate calculations the concentration gradient can be neglected. 

3. Formula (6) was checked by comparing results of probe experiments with results of experiments on SHF 
inspection of a plasma as well as with Chung's calculations [1 ] in the region of its applicability. The comparisons 
showed satisfactory coincidence, which makes it possible to recommend formula (6) for practical application. 

N O T A T I O N  

hi,e, concentration of ions and electrons; Ti,e, temperature of ions and electrons; He, enthalpy of electrons; 
E, electric field strength; ~o, electric field potential; Ii,e, density of ion and electron current; Di,e, coefficient of 
diffusion for ions and electrons. 
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